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The linear problem of determining the temperature in an infinite one-dimensional 
plate with a stationary heat sensor and a stationary boundary is solved. The 
allowable approximation time steps in the calculations can be diminished by using 
a hyperbolic heat-conduction equation with a suitably chosen hyperbolicity pa- 
rameter. 

It has been shown [i] that using a hyperbolic heat-conduction equation to solve the 
linear inverse heat-conduction problem (IHCP) yields the well-posed problem of solving a 
Volterra integral equation of the second kind. We now extend this approach to the case of 
an infinite plate. 

We consider the heat-conduction process in an infinite one-dimensional plate xE[0, b], 
as described by the hyperbolic equation with constant coefficients [2, 3] 

~ o~, ~__1 _.o~!_ _ _o~ ..... o (1) 
a 8t 8x 2 

subject to the initial conditions 

u (0, x) =~ 0; 0u (0, x) 0. (la) 
ax 

One of the following three boundary conditions is prescribed at the boundary of the domain 
(at x = 0): 

u( t ,  O)=Uo(t); q(l, 0 )=  q0(t); q(t ,  O ) = ~ [ U o ( t ) - - u ( t ,  0)]. ( lb)  

At the point x = xx there is a temperature sensor, so that the following measurement con- 
dition is given there: 

u( t ,  x~) -= u~ (t). (lc) 

In expressions (Ib) and (ic) uo(t), qo(t), and ux(t) can be arbitrary functions of the 
time, Equation (i) in conjuction with conditions (la)-(ic) comprises a direct boundary- 
value problem for the domain 0~x~xl of the plate and therefore uniquely determines the 
temperature field in that domain. We assume that the temperature field for 0 ~ x~ xl is 
known (it can be determined by any numerical method [4]), and so the derivative 3u(t, x~) /~x 
and the heat flux q(t, x~) at the point x = x: are known. We note that q(t, x) is related 
to the temperature u(t, x) inside the plate as follows [2, 3]: 

oq j •  
~] - 0 [ -  + q = - ~ Ox ' n = a~ z" (2) 

In the domain xx ~ x ~ b the temperature u(t, x) is obtained as the solution of the prob- 
lem of continuing the temperature field to the boundary x = b according to the known tem- 
perature u(t, x:) and heat flux q(t, xl) at the point x = x~. In place of q it is more 
practical to use the derivative q~(t) = ~u(t, xl)/~x. Equation (i) in conjunction with the 
initial conditions (la) and the conditions 

u (t, xO = ,~ (t~ o4  (t, x,)  _ q~ (t) ( 3 )  
Ox 

comprises  the  i n v e r s e  h e a t - c o n d u c t i o n  problem fo r  the  domain xl ~ x ~ b.  
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We apply the Laplace transform to Eq. (i) and conditions (la) and (3). Denoting the 
Laplace transforms of the functions u(t, x), u1(t), q~(t) by the corresponding upper-case 
letters U(p, x), Ui(p), Q?(p), we obtain an expression for U(p, x) in the domain x1~ x~b: 

'2 

U(p, x) ~= ~ A,~ (p)exp [(-- 1)h[~ (x --x~) 1/-/> +/)/~]l, 
h = l  

(41) 

where 
( - -  1)kQ * (tJ) . k = 1, 2 .  

& (p) = u ,  (/2)/2 + 2fi V})~ + ,oh1 (4a) 

Multiplying both sides of Eq. (4) by exp[--$(x -- x:)/p 2 + p/n], we arrive at the inverse 
transforms therein, invoking the convolution theorem and the known Laplace transforms [i, 
5]. The left-hand side of Eq. (4) is transformed into the operator of the Volterra integral 
equation for the function u(t, x), coinciding with the right-hand side of expression (7a) in 
[i] under replacement of the coordinate x by x -- x:~ The right-hand side of (4) is trans- 
formed into the free term of a two-term integral equation, Introducing the dimensionless 
time Fo = a t/l 2, the quantity y = a$/l, which is the dimensionless receiprocal of the heat 
propagation rate, the coordinate X = (x -- x:)/l, and the quantity Fo* = Fo -- yX, we write 
the resulting integral equation in the form 

Fo* 

u (Fo*, X) exp (-- X/2y) -I- [ u (Fo', X) K (Fo* -- Fo' -~- 7X, X, y) d Fo' ~-- 
0" 

:-- ~ (Fo* + ?X, X) + E (Fo* ...... ~X) % (Fo* + ?X, X). (5) 

Here we have the notation 

% (Fo, X)-- 
Fo 

2a~, .] 
0 

FOt 

'Fo - -  Fo') d Fo' [ exp (--  Fo*/2y 2) 1 
I," F-~ ~ 1,rFo ~2.; F-~;"- d Fo* ' " -~- -~-- ~ (Fo); 

0 

%(Fo, X) . . . .  

Fo--27X 

1 I u~ (Fo - -  27X) exp (--- X/y) -k --2- ,j u: (Fo') K (Fo .... Fo', 2X, ?) d Fo' -~- 

0 

Fo--27X 

0 

q~ (Fo') Ki (Fo - -  Fo', 2X, y) d Fo'; (Sa) 

Ii 1 (Fo2__?~X2) 
K (Fo, X, y) = X_X_. 27z exp ( - -  Fo/27~); 

2? F ~ - - ? ~ X  ~ 

( '  ) K~ (Fo, X, ~) = Io _ T ~  F Fo a -  ~ X  2 exp ( - -  Fo/2~a), 

where Io and la are Bessel functions of the first kind of an imaginary argument and E(Fo) 
is the unit step function [5]. 

The absolute error Au of determination of the temperature u(Fo, X) due to error of the 
right-hand side of Eq. (5) can be estimated in the usual way [6]: 

]Au[ ~-~ 6 exp [X/27 q- Ko Fomax exp (X/27)], (6) 

where 

max IK(Fo, X, ?)[ (6a) Ko ~Voe[ 0, ~O~n~• 

and 6 is the maximum absolute error in the interval Fo6[0, Fomax] Relation (6) implies that 
the integral equation (5) is stable for y > 0. Consequently, problem (i), (la), (3) for 
the continuation of the temperature field into the half-plane x > xt is formally well-posed, 
because it meets all three requirements for we!l-posedness [7]. 
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Fig. i. Partition of the plane HOy into domains of 
stable and unstable (hatched) results, i) Curve 
Hcr(Y) plotted according to the criterion of Alifanov 
[ 8 ] .  

Fig. 2. Determination of the temperature at the 
boundary of a symmetrically heated infinite plate with 
heat source at xl = b/2. i) Exact function u(Fo, i); 
2) temperature u(Fo, i) determined according to ex- 
pressions (7)-(9); 3) points calculated on the basis 
of the parabolic heat-conduction equation for H = 0.17. 

To solve the integral equation (5) we can use the method of approximation of the un- 
known temperature u(Fo, X) by step functions u k = {u(kH, X) + u[(k -- I)H, X]}/2 in sub- 
intervals Bk6 [ (k- I)H, kH]. In this case Eq. (5) is reduced to a system of linear algebraic 
equations with a triangular matrix, whose diagonal elements are equal to [i] 

h 
~ dk--lUl = ~Pih + q~2h; k -- 1, 2 . . . . .  N; 

(7) 
H 

d~= T K(kH+~X--~,X,  ~)d~; k = l ,  2 . . . . .  N; 
0 

. . . . . . .  dh-t  h-l+l,  le l ~ 1, do d* + exp( - -X/2y) ;  dk_z * -~ d* ' --- 

w h e r e  ~ h  and  q%k a r e  t h e  a r i t h m e t i c  m e a ns  o f  t h e  c o r r e s p o n d i n g  f u n c t i o n s  ~i and  ~ i n  t h e  
s u b i n t e r v a l  B k .  To c a l c u l a t e  t h e  q u a n t i t i e s  u k i t  i s  c o n v e n i e n t  t o  u s e  t h e  r e c u r s i o n  
f o r m u l a  

h - - I  

l = 1  

Thus, using the integral form of the hyperbolic heat-conduction equation and then reducing 
it to algebraic form, we transform the linear IHCT to a formally well-posed problem. Inas- 
much as the relaxation times in solids are small, the values of the dimensionless reciprocal 
velocity y usually fall within the limits y = 10 -3 to 10 -5 . For such small values of y the 
algebraic system (7) is as ill-conditioned as for the parabolic heat-conduction equation. 
As a result, only for a large approximation time step H = 1/6 is it possible to obtain a 
stable solution of the IHCP for smooth input data. Consequently, allowance for a finite 
heat propagation rate corresponding to values of y = 10-3-10 -5 scarcely improves the sta- 
bility of the solution of the IHCP over the parabolic heat-conduction equation. 

The condition of the algebraic system (7) improves with increasing value of y, so that 
the integral equation (5) and the system (7) can be regarded as mathematical machinery for 
obtaining an approximate solution of the IHCP, given a suitable choice of the hyperbolicity 
parameter y. While preserving the simplicity of the direct integral method of solution of 
the IHCP, this approach enables us to decrease the approximation time step, a feature that 
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is important for the interpretation of dynamic thermal processes. A similar approach to 
the application of a hyperbolic heat-conduction equation, based on difference schemes, is 
used in [8], where the feasibility of decreasing the allowable computation steps with the 
use of smooth input data is demonstrated. A technique is proposed in [8] for determining 
the critical step Hcr for which the algebraic system approximating the Volterra integral 
equation of the first kind yields a stable solution. The function Hcr(X) is plotted in Fig. 
1 according to this criterion for the integral equation (5). It separates the plane HOx 
into a domain D2 of stable solution and a domain Dx of unstable solution. Numerical experi- 
ments (see also [I]) have shown that for smooth input data, points of the plane HOy in the 
interior of Da can be used for solving the IHCP. This fact is a consequence of the addi- 
tional stabilizing effect of the free term uexp(--X/2y) in the integral equation (5). As u 
tends to zero the error of approximation of the original parabolic heat-conduction equation 
by the integral equation (5) decreases, while the condition number of the algebraic system 
(7) increases. Consequently, a value Yopt of the hyperbolicity parameter exists for which 
the error of determination of the temperature is a minimum. The optimal hyperbolicity 
parameter Yopt corresponding to a good approximate solution of the IHCP can be chosen by a 
quasioptimization procedure. Having chosen the necessary approximation step H, from the 
curve Hcr(Y) we find the corresponding value Yo. Specifying the sequence of numbers Yl = 
yo~ / (where 0 < 8 < 1 and I = 0, i, ...), for each l we carry out calculations according 
to expressions (7) and (8) and choose the optimal value Yopt of the hyperbolicity parameter 
from the condition of minimization of the maximum deviation: 

rain max [uh (?z)-- uk(?i_1)]. 
t k e [ 1 , N  ] 

Numerical calculations indicate sufficient reproducibility of the temperature at the 
boundary of the plate with a small computing step for smooth input data. The results of 
one such calculation are shown in Fig. 2. The approximation step was taken equal to H = 
0.04, and E = 0.85. The optimal value of the hyperbolicity parameter was Xopt = 0.05. It 
is important to note that if the input data are distorted by errors, then the initial tem- 
perature is poorly reproduced. In this event it is required to take larger values of X in 
order to obtain a stable solution (y ~ 0.125), causing a departure from the true tempera- 
ture. Such input data must therefore be approximated by a smooth function according to the 
technique described in [9]. We add in conclusion that allowance for the finite mass-trans- 
fer rate of material in inverse mass-transfer problems by means of a hyperbolic equation 
[i0] should have a more effective regularizing action in comparison with heat-conduction 
problems. 

(9) 

NOTATION 

%, thermal conductivity; a, thermal diffusivity; B, reciprocal of the heat propagation 
rate in the body; p, Laplace variable; b, width of the plate; l = b -- xl, distance from the 
right boundary of the plate to the measurement point; uo(t), temperature of the medium at 
the left boundary of the plate; u(t, x), temperature in the interior of the plate; q(t, x), 
heat flux in the interior of the plate; u:(t), temperature measured in the cross section x = 
xl; qo(t), heat flux applied to the left boundary of the plate; u(Fo, i), unknown tempera- 
ture function at the right boundary of the plate. 
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PROPERTIES OF THE MOTION OF LIQUIDS IN POROUS MATERIALS (REVIEW) 

L. L. Vasil'ev and V. A. Maiorov UDC 532.685 

The possibility of precise and predictable control of the flow rate of a liquid in 
porous materials is one of the most important conditions for reliable operation of various 
heat- and mass-transfer systems based on the use of fluid flow in these materials. However, 
experiments on filtration of a fluid in porous materials have shown that an undesirable 
nonuniform and nonreproducible decrease in time in the flow is observed. In the literature, 
this phenomenon is known as the "filtration effect" [i] or, in analogy with the flow of a 
liquid through capillaries, "obliteration" [2] and is observed during motion of different 
liquids in porous materials [1-14]. A typical example of the decrease in the liquid flow 
through a porous specimen with a constant pressure differential is presented in Fig. i. 

It is of great interest to generalize and analyze the available experimental data in 
order to clarify the true reasons for the phenomenon indicated, about which different 
opinions still exist in the literature. 

This problem is discussed most completely in [2, 3]. The following are the main rea- 
sons mentioned for the decrease in the liquid flow rate with flow in porous materials: 

i) The physical properties (in particular, viscosity) of the liquid in a thin layer 
near a continuous surface differ from the physical properties in the bulk. 

2) Molecular layers that gradually decrease the clear pore openings in the porous 
structure are adsorbed on the surface of the solid body. 

When a liquid makes contact with a solid surface, adsorption films whose properties 
differ from the properties of the liquid in the bulk are formed. If the liquid is a non- 
polar dielectric, whose molecules have a zero dipole moment, then the interaction between 
the molecules of the material and the liquid stems from molecular force fields. Such li- 
quids include benzene, kerosene, etc. If the liquid is a polar dielectric, then the elec- 
tric field of the material causes definite orientation of the molecules of the liquid and 
formation of a polymolecular adsorption layer. Such liquids include water, acetone, etc. 
If the liquid contains free ions, then due to their adsorption an electrically charged 
double-layer is formed. 

Regardless of the reasons for the formation, changes are observed in the structure of 
the fluid in surface layers (ordered molecular layers), and therefore, changes in the 
structurally sensitive physical properties (in particular, viscosity and thermal conduc- 
tivity). It follows from here that the first of the reasons mentioned above for oblitera- 
tion is a result of the formation of adsorbed layers. 

In order to verify the hypothesis of the considerable influence of an adsorbed layer 
on the decrease of the liquid flow rate in porous materials, it is necessary to have informa- 
tion concerning the thickness of this layer. Its thickness depends on the thermophysical 
and thermodynamic properties of the liquid and of the solid body, temperature, and structure 
of the porous material. By applying shear stresses (external flow), it is possible to de- 
crease the thickness of the adsorbed layers due to detachment of the outer, weakly bound 
molecules. A gradual weakening of the boundary layers of the fluid with increasing tempera- 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belo- 
russian SSR, Minsk. Novopolotskii Polytechnic Institute. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 40, No. 4, pp. 1111-1123, June, 1981. Original article submitted 
June 18, 1980. 

672 0022-0841/81/4006-0672507.50 �9 1981 Plenum Publishing Corporation 


